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Communication satellites in synchronous equatorial orbit may have to be reposi- 
tioned from one stationary longitude to another. minimize fuel consumption, the 
longitude repositioning maneuver is best effected changing the orbit period with a 
thrust impulse collinear with the orbit velocity vector. The change in orbit period pro- 
duces a steady longitudin drift of the satellite. Whep the satellite reaches the desired 
longitude, a second thrust impulse is applied to restore the synchronous condition. Im- 

hrusting, however, may not be possible if an electric propulsion system is 
e to very low thrust levels, continuous thrust over many orbits may be neces- 

sary to effect a longitude change in a reasonable length of time. The velocity increment 
AV of the repositioning maneuver is a function of the change in longitude, the time of 
transit from the initial to the fin longitude, and the acceleration imparted to the satel- 

the propulsion system. 
r a fixed change in longitude and time of transit, there exists a minimum accel- 

eration for which longitude repositioning em be accomplished e s the acceleration 
approaches infinity, the AV approaches a v ue equal to one-half the value corre- 
sponding to the minimum acceleration. The nature of this variation in AV is such that 
a major portion of this possible AV reduction is obtained for an acceleration of ap- 
proximately twice the minimum. 

time of transit for which longitude repositioning can be accomplished. 
transit time slightly larger than the minimum is significantly less than the AV for  the 
minimum transit time. 

he AV required to remove any residual eccentricity at the end of the reposition- 
ing maneuver is negligible. The Earth9s triaxiality has a negligible effect on the A T  

requirement. 

F o r  a fixed change in longitude and fixed acceleration, there exists a minimum 



MT ROD U CTION 

Communication satellites in synchronous equatorial orbit may have to be reposi- 
tioned from one stationary longitude to another. F o r  example the next generation of 
high power communication satellites may be used for communications over sections of 
Africa, Europe, and Asia. After some time, the satellite may be shifted in longitude 
by as much as '880' for communications over North and South America, The systems 
engineer must allow for the additional fuel required for  the repositioning maneuver. 

The term PPstationwalking'P is used in referring to tlie changing of the stationary 
position of- a synchronous equatorial satellite from one longitude to another. For mini- 
mum propellant consumption the stationwalking maneuver is most effectively accom- 
plished by ;hanging the orbit period with a thrust impulse collinear with the orbit ve- 
locity vector. 
satellite. When the satellite reaches the desired longitude, a second thrust impulse is 
applied to restore the synchronous condition. The second impulse is equal in magni- 
tude but opposite in direction to the first. 

satellites of the future may use  electric propulsion for  attitude control and stationkeeping 
(see ref. I) in order to keep the total propellant weight to a practical percentage of 
spacecraft weight, To avoid duplication of hardware, the same propulsion system may 
also be used for  longitude repositioning. ue to very low thrust levels, continuous 
thrust over many orbits may be necessary to effect a station change. 

pulsive thrusting, esign curves are included in the report for  calculating the AV re- 
quirement for the stationwalking maneuver. 

he change in orbit period produces a steady longitudinal drift of the 

Impulsive thrusting, however, may not always be permissible. Communication 

This report analyzes the stationwalking maneuver including the effects of nonim- 
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acceleration imparted to satellite by propulsion system 

minimum acceleration for a given change in longitude and t ime of transit 

semimajor axis of orbit 

variation of semimajor axis from semimajor axis of synchronous orbit 

eccentricity of orbit 

maximum eccentricity of orbit during nonimpulsive thrusting 

true anomaly 
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satellite longitude 

change in longitude effected by repositioning maneuver 

satellite longitude before repositioning maneuver 

satellite longitude after repositioning maneuver 

variation of orbit geocentric radius from geocentric radius of syn- 
chronous orbit 

time of transit from initial longitude to final longitude 

minimum time of transit for a given change in longitude and acceleration 

time 

time duration of one thrusting period 

time duration of coast period 

velocity of satellite in circular synchronous orbit 

velocity increment required for  repositioning maneuver 

velocity increment required for  repositioning maneuver with triaxiality 
effects accounted for  

velocity increment required for  removing residual eccentricity 

maximum velocity increment for a given change in longitude and accel- 
eration 

maximum velocity increment for  a given change in longitude and t ime 
of transit 

minimum velocity increment for  a given change in longitude and accel- 
eration 

minimum velocity increment for  a given change in longitude and time of 
transit 

satellite longitude relative to nearest  minor axis of Earth's equatorial 
section 

average angular velocity of osculating orbit 

variation of average angular velocity from angular velocity of circular 
synchronous orbit 

angular velocity of circular synchronous orbit 

variation of satellite longitude from reference longitude 
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p Earth's gravitational constant 

cp 

o 

Subs c ript : 

0 initial condition 

angular distance of satellite from x-axis 

longitude of perigee measured from x-axis 

A synchronous satellite has an average angular velocity of 360' per sidereal day. 
To change the satellite position from longitude L1 to longitude L2, the angular ve- 
locity, and hence the orbital period, must be modified. For example, suppose that the 
change in longitude AL is 30' and the time of transit T from L1 to L2 is IO days. 

the adjustment in orbital period is done impulsively, then the adjusted period must be 
such as to cause the satellite to drift an average of 3' per day. So the adjusted average 
angular velocity is either 363' per day o r  357' per day, depending on whether the satel- 
lite drifts eastward o r  westward. After 10 days, when the satellite is at longitude 
the orbital period must be restored to the synchronous condition. 

The orbital period B is given by 

P = 2a 

where a is the semimajor axis and p is the Earth's gravitational constant. 
only way to change the orbit period is to change the semimajor axis. To produce an 
eastward drift, P must be made smaller and a must be decreased. 

must be made larger and a must be increased. 
The most effective method of changing the semimajor axis is to thrust eastward o r  

westward. Assume that L2 is to the east of El" or  impulsive thrusting, the first 
impulse must be directed westward in order to decrease the semimajor axis (see 
fig. l(a)). An apogee is created at the point of thrust application. After the satellite 
has drifted to the desired longitude, a second thrust impulse is applied as shown in  

first, restores the synchronous condition. The second impulse must be 
apogee of the stationwalking orbit in order to remove the eccentricity. 

he second impulse, equal in magnitude but opposite in direction to the 

4 



E2 to the west of L19 the direction of the thrust vectors in figure 1 would be reversed. 
shows orbital velocity and satellite longitude as functions of time for the 

case of L2 to the east of L1" The solid portions of the curves represent the average 
velocity and average satellite longitude. The dashed portions represent the sinusoidal 
oscillations due to the eccentricity of the stationwalking orbit. Although the first im- 
pulse reduces the orbital velocity, the average velocity of the stationwalking orbit is 
greater than the velocity of the synchronous orbit. 

Noniimpulsive Tk rust 

If low-thrust propulsion is used for stationwalking, impulsive thrusting is not 
possible. For nonimpulsive thrusting, the stationwalking maneuver is carried out in 
three phases a et us assume that L2 is to the east of L1. Let A be the acceleration 
imparted to the satellite by the thruster. In the first phase, westward thrust is applied 
for a time t determined by AL, T, and A. The second phase is a coast phase during 
which the satellite drifts steadily eastward for a time t2' Kn the third phase, eastward 
thrust is applied in order to increase the semimajor axis to its synchronous value. If 
it is assumed that A is the same  for both thrust periods, the third-phase thrusting 
time is again Figure 3 shows orbital velocity and satellite longitude for the case of 

Oo, T = 28 days, A = 3.4~10-' g's. The oscillatory components of the 
velocity and longitude due to orbit eccentricity are not shown in figure 3. 

In order to minimize fuel consumption, the thrusting time 2tl should be much 
smaller than the coast time t2. For very low thrust levels, however, 2tl may be of 
the same order of magnitude as t2 (see fig. 3). In the general case, for a given L 
L , A, and T, longitude as a function of time (neglecting oscillatory components due to 
eccentricity) is given by 

1 

L 1 = O  0 9 Lz= 

2 

= . ( . ) t 2  + L 



When the double sign, f o r  T~ is used, the upper sign is for the case of L2 to the east 
of L I B  The lower sign is for the case of L2  to the west of L I S  Notice that L(t) is 
quadratic during the thrust periods and l inear during the coast period. 

Equations (I) along with the equations of the following sections are derived in ap- 
pendix A D  The following assumptions were made in deriving these equations: 

(1) The acceleration level A is constant through both thrusting periods. 
(2) Erro r s  in the magnitude and direction of thrust and in the time-off and time-on 

(3) The effect that the Earth% triaxiality has on satellite longitude is neglected. 
Appendix B presents a discussion of how the Earth% triaxiality affects satellite 

of the thrusters are neglected. 

longitude, The analysis shows that for  T less than 100 days, triaxiality has a negli- 
gible effect on the repositioning maneuver requirements 

are known parameters, then one can calculate the thrusting time 
required for the stationwalking maneuver. From appendix A, the thrusting t ime is 
given by 

?tI = 

The coast time, by the definitions of 

t - T - % t  2 -  

The velocity increment A V  needed to carry out the stationwalking maneuver is 

In system design, two cases often occur. In onecase  AL and T are fixed param- 
eters, and the system designer is interested in the functional relation of AV and A ,  
In the second case 8% and A are the fixed parameters, and the functional relation 
of AV and T is desired, These two cases are analyzed in the following sections. 



Fixed AL and T 

If AL and T are fixed parameters, the acceleration level A must be greater 
than a minimum value 
thrusting f rom L1 to E2; that is, 2t1 = Te The minimum acceleration for  fixed AE 
and 'if is given by (see appendix A) 

which corresponds to the case of continuously 

4al A L  1 
3T2 

2 Figure 4 is a plot of aminI A as a function of A /T By using equation (3), it can 
be shown that the partial deri  e of AY with respect to A is less than zero, imply- 
ing that the AV decreases as A increases when A L  and T are fixed. Equivalently, 
the AY has amaximumvalue  AV 
value A V ~ ~ ~ I  
",ax AE,T 

when A = A min) A 

endix A, AVmin I AL 

and a minimum 
s one-half of 

,T I or  

Figure 5 i s  a plot of avm,I 

ized form by (see appendix A) 

as a function of AL/T. 
The functional relation of A% and A for a fixed AL and T is given in normal- 

Figure 6 is a plot of A - v / A v ~ = ~  AL, T as a function of A / A , ~ ~  I AL9 Te By differen- 
tiating equation (6), it can be shown that the derivative of AV/AVmaxI AL, evaluated 

at '/Amin/ 
when A is only slightly la rger  than 
duction in AV is achieved when A 
5, and 6 can be used to calculate A 

and 5 are used to find 

I Amin AL, ~9 

1 is infinite, indicating that a significant saving in AY is achieved 

and A ,  the AV can be found from figure 6. 



and A are fixed parameters, the t ime of transit must be greater than 
a minimum value T~~~ I AL, A which corresponds to the case of continuously thrus 

given by 
to L2" From appendix A, the minimum transit time for fixed AI, and 

igure 9 is a plot of T~~~ I AL, A as a function of &/A. BY using equation (3), it 
can be shown that the partial derivative of AV with respect to T is less than zero, 
implying that the AV decreases as T increases when BE and 
valently, the AV has a maximum value AV 
minimum value avmin I AL, A 
"max AL,A 

when T = Tmin and a 
endix A, AVmin 1 and 

I are given by 

Figure 8 is a plot of AVmaxl AL, A as a function of A AE. 

ized form by (see appendix A )  
The functional relation of AV and T for a fixed AL and is given in normal- 

- - AV 

"max I AL,A 

Figure 9 is a plot of AV/AV,, I AL9 A as a function of %'/ 
relation of AV and T for afixed AL and is similar to na9 relation of 
AV and A for a fixed AL and T (compare eq. (9) with eq. (6) and fig. 9 with fig. 6), 

The functional 

- 00) where- 

hat the derivative of 
is infinite, indicating that a signifi- 
a rger  than gmin 1 A 
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7, 8, and 9 can be used to calculate AV for given values of &, 
'7 and 8 are used to find 

the ratio of propellant weight to spacecraft weight is assumed small, the propel- 
lant weight as a function of AV is given by 

where W is the propellant weight, is the spacecr weight, g is the acceleration 
of gravity, and I is the specific impulse. Equation 0) can be used to calculate the 
propellant weight once the AV is known. 

P 
SP 

Any residual eccentricity remaining at the end of the stationwalking maneuver must 
be removed. With the assumption that the orbit is circular when thrusting begins, ec- 
centricity during the thrusting phase is given by 

where ie is the angular velocity of the synchronous orbit and emax is 

I), which is derived in appendix ~ is plotted in figure PO. If nonimpulsive 
thrusting is used, both thrusting periods should be an integral number of days so that the 
stationwalking orbit and final synchronous orbit wil l  be circular. If the thrusting periods 
are not an integral number of days, the residual eccentricity will not be greater than 

Let AVe be the velocity increment needed to remove the residual eccentricity. 
reference 1, AVe is bounded by 

9 



Substituting equation (1 2) into equation (1 3) results in 

AV 5 alAl 
'e 

e 

F o r  A expressed in g9s  and AVe in meters per second, equation (14) becomes 

rom equation ( f5 ) ,  AVe is insignificant for very low accelerations (less than IOe5 g's). 
o r  la rger  accelerations, the upper bound for AVe may become significant. 

be noted, however, that by a judicious choice of thrusting times, the eccentricity at 
thrust cutoff can be made much closer to zero than to emaxe 

I 
S 

The purpose of this report is to analyze the methods and requirements for longitude 
repositioning of a satellite in synchronous equatorial orbit. The method of longitude repo- 
sitioning consists of an initial thrusting phase, a coast phase, and a final thrusting phase, 

he thrust vector is directed eastward in one thrusting phase and westward in the other. 
he requirements for longitude repositioning are given in terms of the velocity in- 

crement AI? of the maneuver. The AV is a function of the change in longitude, the 
time of transit from the initial to the final longitude, and the acceleration imparted to 
the satellite by the propulsion system. 

For  a fixed change in longitude and time of transit, there exists a minimum accel- 
eration for which longitude repositioning can be accomplished. As the acceleration ap- 
proaches infinity the AV appr ches a value equal to one-half the value corresponding 
to the minimum acceleration. e nature of this variation in AV is such that a major 
portion of this possible AI? reduction is obtained for an acceleration of approximately 
twice the minimum, 

F o r  a fixed change in longitude and fixed acceleration, there exists a minimum time 
of transit for which longitude repositioning can be accomplished. A s  the time of transit 
approaches infinity, the AV approaches zero. The nature of this variation in AV is 
such that a major portion of the possible AV reduction is obtained for  a transit time 
of approximately twice the minimum, 



The AV required to remove any residual eccentricity at the end of the repositioning 
maneuver is negligible. The Earth's triaxiality has a negligible effect on the AV re- 
quirement a 

Lewis Research Center, 
National Aeronautics and Space Administration, 

hio, January 5, 1971, 
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Assume that A , T, and A are known quantities and that t19 t2? and AV are to 
be calculated. First w e  must find the change in semimajor axis due to tangential thrust- 
ing. From reference 2, the time rate of change of the semimajor axis for a nearly cir- 
cular orbit is 

d a -  2A 
dt 6 
- _ -  

where 6 is the average angular velocity of the osculating orbit. The acceleration A is 
assumed positive for eastward thrust and negative for westward thrust. If changes in 
h are assumed to be small, Aa is given by 

where t is the t ime of thrusting. 

locity A i a  The average angular velocity is given by 
e now wish to find a relation between Aa  and the change in average angular ve- 

where p is the Earth's gravitational constant. If the variations A a  and A i  are as- 
sumed small, we  obtain 

(A41 
-36 Aa Aa  = - 

2a 2a 
' - 3  A6 = - 

ubstituting equation ( 2) into equation (A4) gives 

0 -3At AO=- 
a 

2 



he stationwalking maneuver is carried out in three phases. The first and third 
phases are thrusting phases, and the second phase is a coast, Let ALa be the change 
in longitude during the first phase, AEb the change in longitude during the second 
phase, and A%, the change in longitude during the third phase. W e  now proceed to find 
AL,, ALb9 ALC as functions of t1 and t2' The change in longitude ALa is given by 

A i  dt 

Substituting equation (A 5) into equation (A6) and carrying out the integration gives 

2 
AL =- 

- 3Atl 

a 2a 

During the coasting phase, A0 is constant and is equal to 

. -3Atl 
A 0  = - 

a 

he change in longitude ALb is given by 

Substituting equation (A8) into equation (As) and carrying out the integration results in 

e make the convention that the sign of A is determined by the direction of thrust dur- 
ring the third phase, the direction of thrust is reversed. So A i  ing the first phase. 

during the third phase, from equations (A5) and (A8), is given by 

a a 

3 



where t is the time elapsed in the third phase. If it is recalled that the first and third 
stages are of the same duration, then 

ALc = 

Substituting equation 11) into equation (Ala) and carrying out the integration gives 

By adding equations (A7), (AIO), and (A13), we obtain 

AL = A%,. + ALb + ALc = -- 
a a 

Now t2 is given by 

t - T - % t  2 -  

Substituting equation (AP5) into equation (AI$) yields 

earranging te rms  results in 

Using th  

2 a A% tg - TtP - - = 0 
3A 

dratic formula, we solve f o r  the thrusting time 2tll a follow 

2tl = T - 

From equation (A%$), it is clear that A% and A are of opposite sign, So equation (AP8) 
can be written as 



2tl = T - 

The AV is then given by 

W e  now wish to find AVmin( Ak, T9 the minimum AV for a fixed AL and To By 
it can be shown that taking the partial derivative of equation (A20) with respect to IAI 

for  all permissible values of AL9 and A. Thus equation (A20) is a monotonically 
decreasing function of I A I 
By taking the limit of equation (A20) as ( A  I approaches infinity, A i m i n (  AL, is cal- 
culated to be 

implying that the minimum AT6 occurs when I A ( is infinite. 

Equation (A 21) implies that AVmax I AL, T9 the maximum AV for a fixed AL and T, 
occurs when A is equal to its minimum permissible value Amin( dL9 Te The minimum 
acceleration occurs when 2t1 = 
in equation ( ~ 1 9 )  is zero. Solving fo r  A ~ ~ ~ (  

o r  when the expression under the square root sign 
gives 

- 4a(  ALI 
n Amin I AE.T - 

3T' 

By evaluating equation (A20) when A = AminI AL, T9 w e  obtain an expression for 

"max I AIL, 

- 4a 
"max I A L , T - ~  

Equations (A22) and ( A N )  imply that 
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"max I AL, T = 2Avmin I A L ~  T 

Combining equations (A20), (A23), and (A24) gives 

- A AV c 

"max I AL,T 'min I AL,T 

W e  now wish to find AVm,I AL,A9 the maximum AV for a fixed AL and A. By 
taking the partial derivative of equation (A20) with respect to T, it can be shown that 

for all permissible values of AL, T, and A, Thus equation (A20) is a monotonically 
decreasing function of T, implying that the maximum AV occurs when T is equal to 
its minimum permissible value, TminI AL,A. The minimum time occurs when the ex- 
pression under the square root sign in equation (A19) is zero. Solving for TminI AL,A 
results in 

Tmin I AL,A = 

Evduating equation (A20) when T = Tmin I AL, A, we obtain 

"max I AL,A' 

1 

(A28) 

the following expression for 

The minimum AV occurs when T is infinite. Taking the limit of equation 
approaches infinity gives 

"min I A L , A = '  

Combining equations (A20), (A28), and (A29) yields 

- T - AI? 

A%, A Tmin I A%, A 



Equations will now be derived for finding orbit eccentricity during the time of 
thrusting. The coordinate system adopted is shown in figure 11, where the x-y system 
is an inertial reference with origin at the Earth's center. he x-y plane is the equato- 

true anomaly, and q is the angular distance of the satellite from the x-axis. From 
figure 11 the angles w ,  f ,  and 'p are related by the equation 

he angle w is the longitude of perigee measured from the x-axis, f is the 

The point B on the Earth's equator is assumed to lie on the positive x-axis at t = 0. 
Thus, at time t, the angle between the line OB and the positive x-axis is Qet, where 
8, is the angular velocity of the Earth's rotation (360' per sidereal day). Let AA(t) be 
the variation at time t of the satellite longitude from the longitude of point B. Then 
AA(t) is given by 

W e  now proceec 

M(t) = q(t) - iet 

to find eccentricity as a function of time with thrust ,eginning at 
t = 0. W e  first derive equations for d(AA)/dt, de/dt, and dw/dt. For an orbit with 
small eccentricity, dq/dt is given to first order in e by (ref. 2)  

- -  'q- i + 2 e i  cos f 
dt 

where i is the average angular velocity of the osculating orbit. The variation in i is 
given by 

o n *  

A8 = 8 - Be 

Using equations (A32) to (A35) and recalling that x ie result in 

do = A; + 2eie COS(AX + tiet - 0) 
d t  

From equation (A5), A6 is given by 

* -3At 
A8 = - 

a 



where A is the acceleration and a is the semimajor axis. The acceleration A is 
assumed positive for eastward thrust and negative for westward thrust. Equation (836) 
can now be written as 

rom reference 2,  de/dt and dw/dt are given to first order in e by 

28 cos(M + eet - w )  de  - 2 8  cos f - - -  - 
dt a Be a', 

dw - 2A sin f - 2A sin(& + eet - w )  
- -  - (839) 
d t  eaOe ea', 

Equations (A37), (A38), (A39) from a coupled system of three first-order differen- 
tial equations. If w e  assume that the change in M is small over a one-orbit period, 
then equations (A38) and (A39) form a coupled system of two equations to be solved over 
a one-orbit period 

2A cos(M + eet - w )  de  - 
dt a ie 
- _  

In equations (840) and (A41), M is assumed to remain approximately equal to its initial 
value Mo" To this point, we have not specified initial conditions. W e  now impose the 
initial condition that eo = 0. To determine wo9 consider the case where the thrust is 
in the eastward direction, At t = 0, the satellite's angular distance from the x-axis is 
found from equation (A33) to be Mo = ~ ( 0 ) .  An eastward tangential thrust applied to a 
circular orbit at the angular position Mo will create an instantaneous perigee at that 
position. Thus, wo = MOO For thrust in the westward direction, wo = Mo + 8 ,  The 
solution to equations (A40) and (A4P) satisfying the initial conditions is found by assuming 
w is a linear function of time 

18 



iet 

ai: 2 
4 1 ~ 1  . e(t) = sin - 

t;,t 
w(t)  = - + wo 

2 

Substituting equation (A42) into equation (A37) and integrating, w e  obtain the following 
solution for Ah(t): 

3At2 AX(t) = AXo - - 
2a 

As an application of equations (A42) to (A44), consider first the case where t = 0 
corresponds to the beginning of thrusting. Equation (A42) implies that eccentricity is a 
half sine wave over a 24-hour period with a maximum value of 

At the end of the 24-hour period, the eccentricity is again 0. W e  now re-initialize the 
problem, the only change being that Aho is no longer cp(O), rom equation (A44), the 
new Mo is given by 

2 6i7 2A AXo = q(0 )  - @ (24 hr )  = cp(0) - - 
a 2a 

Again the solution for  e is a half sine wave over the second 24-hour period. By con- 
tinuing the process, the eccentricity will be a succession of half sine waves with ampli- 
tude given by equation (A45). 
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n analysis of the effect of the EarthPs triaxiality on a synchronous satellite is 
given in reference 3. A brief synopsis of that analysis is presented here. The Earth's 
equatorial cross section is approximately an ellipse whose minor axis passes through 
74.6' east longitude and 105.4' wes t  longitude (ref a 4). These two longitudes are 
stable points Neglecting other perturbations, a synchronous satellite placed at either 
of these longitudes will tend to stay there. If a satellite is positioned at any other lon- 
gitude, it will undergo a longitudinal oscillation about the nearest minor axis. A simul- 
taneous oscillation in orbit radius also occurs. The period of the oscillations in longi- 
tude and radius is greater than 2 .2  years. 

In this appendix, the symbol y will denote longitude relative to the nearest minor 
axis of the Earth's equatorial section. Figure 12 presents the oscillations in radius A r  
and longitude y for two cases. The initial longitude yo is 45' in the first case and 
25' in the second case. The period of oscillation is 2.7  years for yo  = 45' and 2.3 
years for yo = 25'. 

In figure 13, we present another Ar - y curve, except now we neglect triaxiality 
effects and consider what happens when stationwalking from longitude y1 to longitude 

W e  assume that the thrusting time is much smaller than the coasting time. If 
T = 30 days is the given time of transit from y1 to y2? then the first thrusting period 
would produce a change A r  in the orbit radius. This maneuver corresponds to moving 
from point A to point B in figure 13. ring the coast phase, we move from B to C. In 
the second thrusting period, the synchronous radius is restored and w e  move from C 
to D. Now assume that the time of transit is T v  = 15 days, where T' < 
change in radius Ar? will have to be greater than Ar.  The path followed is ABfCf 
instead of ABCD. 

count. Again assume that the time of transit is T or  The triaxiality produces a 
change in radius during the coast phase. So the first c 
will not be the same as the second change, Ar2 or  A r i a  The dashed portion of the 
curve represents the path that would occur if  there were no second thrusting period. 
Here it is assumed that A r I 9  A r i ?  Ar29 As; are less than 30 kilometers. 
in radius greater than 30 kilometers, the triaxiality effect is not great enough to 
pqcaptureqg the satellite and it would continue drifting westward in the absence of a sec- 
ond thrusting period. 

Y 2 "  

Figure 14 presents the Ar - y curve when the triaxiality effect is taken into ac- 

e in radius, Arl  or A r i 9  
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Assume that y19 yZP and T are given parameters. Let Ar be the necessary 
change in radius, neglecting the triaxiality effect. Let ArI and Ar2 be the first and 
second changes in radius when triaxiality is taken into account, Let AV be the velocity 
increment for  the stationwalking maneuver when triaxiality is neglected. Let A V  be 
the velocity increment when triaxiality is taken into account, Table H presents an array 

TABLE I. - DATA FOR CASE OF y1 '= 20' AND y2 = 10' 

4 6 . 2  
6 6 . 4  
8 6 . 5  

1 0 6 . 7  
1 2 6 . 9  

Velocity 
increment 

when 
triaxiality is 
neglected, 

AV, 
m/sec 

2 . 1 9  
1 . 2 3  

. 8 6  

. 6 6  

. 5 3  

. 4 5  

Vel0 city 
increment 

when 
triaxiality is 
accounted for, 

AV', 
m/sec 

2 . 1 8  
1 . 2 2  

. 8 4  

. 6 4  

. 5 0  

. 4 1  

Change 
in radius 

when 
triaxiality is 
neglected, 

A r ,  
m 

3 0  000 
1 6  9 0 0  
11 700 
9 000 
7 3 0 0  
6 1 0 0  

First change 
in radius 

when 
triaxiality is 
accounted for, 

m 

29 000 
1 5  200  

9 3 0 0  
5 700 
3 3 0 0  
1 1 0 0  

Ar1, 

Second change 
in radius 

when 
triaxiality is 
accounted for, 

Ar2,  
m 

30 700 
1 8  200  
1 3  700 
11 6 0 0  
1 0  6 0 0  
1 0  200 

, AV, AVv,  A r ,  ArI9 and Ar2 for the case y1 = 20' and y2 = 10'. The 
is assumed to be much smaller than T. As T becomes larger,  the dif- 

than AVq in all cases, the reason being that the sum of Arl and Ar2 
ArI and Ar2 becomes larger.  Notice, however, that AV is only 

is nearly q u a l  to 2 A r  in.all cases. 
ne would suspect that AV - AVq is greatest when y1 = - y2 .  In this case the 

midway between yI  and y Z S  and AV9 = 0 i f  T is equal to one-half 
lation. But T would have to be greater than I year in such a case, 

ess than I00 days, A V  and AVp are nearly the same, even for the case 
15 presents curves of AV and AV? when y p  = -y2.  
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'.-Stationwalking .\ I 

(a) First impulse. (b) Second impulse, 

Figure 1. - Stationwalking maneuver with impulsive thrusting. 
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Figure 2. - Orbit velocity and satellite longitude as functions of time for 
impulsive thrust ing maneuver. L2 i s  east of Lp 
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Figure 3. - Orbit velocity and satellite longitude as functions of time 
for nonimpulsive thrusting maneuver. L2 i s  east of Lp Oscilla- 
tory components due to eccentricity are not shown. 

1" 

10-2 10-1 100 101 
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AUT2, deg/day2 

Figure 4. -Min imum acceleration for a fixed change in longi- 
tude and time of transit  as function of ratio of change in 
longitude to square of time of transit. 
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Figure 5. -Maximum velocity increment for fixed change in longitude and time of transit  
as function of ratio of change in longitude to time of transit. 

1 2 3 4 5 6 7 8 9 10 
Ratio of acceleration to minimum acceleration for a fixed change in longitude and 

time of transit, A/AminlAL,T 

Figure 6. - Normalized velocity increment as function of normalized acceleration. Normalization is 
with respect to fixed change in longitude and time of transit. 
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U c m 

Ratio of change in longitude to acceleration, ALLIA, deglg's 

Figure 7. - Minimum time of transit  for fixed change in longitude and acceleration as a function of the 
ratio of change in longitude to acceleration. 

Figure 8. -Maximum velocity increment for fixed change in longitude and acceleration as a function of 
the product of change in longitude and acceleration. 
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1 2 3 4 5 6 7 8 9 10 

Ratio of transit  time to minimum transit  time for a fixed change in longitude and acceleration, T/Tmin(AL,A 

Figure 9. -Normalized velocity increment as function of normalized transit  time. Normalization is  with 
respect to fixed change in longitude and acceleration. 

Time, day 

Figure 10. - Normalized eccentricity as function of time during 
thrust ing period. elemax = lsinbet/2)); emax = 4IAl/a$ 
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Figure 11. -Coordinate system. 

Case bngitude, Period, 
701 Yr 

deg 
1 4s 2. 7 ---- 2 2 5  2.3 

-- 
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T 30 

I 
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Figure 12. -Variation in radius as function of longitude; Pro = 0. 
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Variation in radius, A r  

T' = 15 days 

Figure 13. - Variat iomin radius as function of longitude for two stationwalking maneuvers. Triaxiality effects are 
neglected. 

Variation in radius, Ar 

Longitude, y 

Figure 14. -Variat ion in radius as function of longitude for two stationwalking maneuvers. 
Triaxiality effects are accounted for. 
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Figure 15. -Velocity increments with and without triaxiality effects as functions of 
time of transit. 
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